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The early detection and classification of Alzheimer’s disease (AD) are important clinical support tasks for medical
practitioners in customizing patient treatment programs to have better manage the development and progres-
sion of these diseases. Efforts are being made to diagnose these neurodegenerative disorders in the early
stages. Efficient early categorization of the AD and mild Cognitive Impairment (MCI) from HC is necessary
as prompt preventive care could assist to mitigate risk factors. For analysis and prognosis of disease, Mag-
netic resonance imaging (MRI). In this paper, we proposed a novel computer-aided diagnosis (CAD) cascade
model to discriminate patients with the AD from healthy controls using dual-tree complex wavelet transforms
(DTCWT), principal component analysis, linear discriminant analysis, and extreme learning machine (ELM). The
proposed method obtained accuracy of 90�26±1�17, a specificity of 90�20±1�56 and sensitivity of 90�27±1�29
on the Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset and accuracy of 95�72±1�54, a sensitivity
of 96�59±2�34 and specificity of 93�03±1�67 on the Open Access Series of Imaging Studies (OASIS) dataset.
The proposed method is effective and superior to the existing models.

Keywords: Alzheimer’s Disease, Computer-Aided Diagnosis, Dual-Tree Complex Wavelet Transform,
Principal Component Analysis, Linear Discriminant Analysis, Extreme Learning Machine,
Alzheimer’s Disease Neuroimaging Initiative, Open Access Series of Imaging Studies.

1. INTRODUCTION
The most widely recognized reason for dementia is Alzheimer’s
disease (AD), where it is proved by the fact that about 50% to
80% of all dementia victims are sufferers of this disease. The ill-
ness influences people’s memorization, cognizance, and actions.
Various kinds of degeneration transpire in the hippocampus and
other different parts of the brain since the AD is a neurodegener-
ative illness. Even though it is not a usual disease, but still holds
the 6th position amongst the prominent reasons for death in the
USA. As of now, there is no cure for this disease; nevertheless,
few precautionary steps can be taken to reduce the risk factors
and decelerate the retrogressive growth. According to a survey,
approximately $605 billion universally and $220 billion in the
USA is spent every year on diagnosing AD. Many individuals
experience the ill effects of AD around the world and requests

∗Author to whom correspondence should be addressed.

on analysts are developing promptly. MRI is a compelling ther-
apeutic image development method, as it has the demonstrated
potential to see architectural changes in the human brain, interior
organs, and different tissues.
MRI creates finest basic images, giving unique tissue data,

which upgrades both the exactness of brain pathology anal-
ysis and nature of treatment. A key preferred standpoint of
this procedure is its non-invasiveness. Many types of research
have been directed utilizing multivariate investigation calcula-
tions and architectural/functional MRI to group neurological
sicknesses.1–3 An essential concentration of these examinations
was the substantial dimensionality of extracted characteristics
and the distinguishing proof of disease signs among them where
most the discriminative data of said illnesses exists. Results
demonstrated huge cerebral structural changes in a few cerebrum
ROIs, especially in the hippocampus and entorhinal cortex.4 Cos-
mic and inner intensity-based characteristics,3�5 and additionally
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geometric and surface-based highlights,6�7 have utilized as a
part of prior investigations for categorizing disease. The authors
showed an electroencephalogram (EEG) intelligibility analysis
of Alzheimer’s disease by utilizing a probabilistic neural net-
work (PNN) and demonstrated critical precision in recognizing
genuine AD from the control classes.8 Sandeep et al.9 strat-
ified AD utilizing discrete wavelet coefficients as an element
for preparing and testing Support Vector Machines (SVM) and
neural network classifiers. Getting fundamental biased features
from MRI images is basic for a capable study of disease anal-
ysis. The favored element extraction techniques, among those
most commonly utilized, are independent component analysis,10

wavelet transform,11 and Fourier transform.12 This examination
has been led utilizing discrete wavelet features and the k-nearest
neighbor technique (k-NN)12 on an Artificial Neural Network
(ANN).12 Zhang and Wang14 ran AD prediction models using
displacement field estimation between AD and healthy controls
using some categorizers such as-SVM, Generalized Eigenvalue
Proximal SVM (GEPSVM) and Twin Support Vector Machine
(TWSVM). Tomar et al.15 looked into a few sorts of twin SVM
techniques, their advancement issues, and their applications.
Siyuan Lu et al.34 have examined pathological brain recognition
applying Extreme Learning Machine (ELM) by bat technique.
Jha et al.13 utilized Wiener-filtering, 2D-Discrete Wavelet Trans-
form, Probabilistic PCA, and Random Subspace Ensemble Clas-
sifier for classification of pathological brain images on a Harvard
dataset. Lama37 et al. has used structural MRI Images using a
regularized extreme learning machine and PCA features for diag-
nosis of Alzheimer’s disease. Jha et al.38 designed an efficient
cascade model for Pathological Brain Image Detection by Mag-
netic Resonance Imaging for the pathological brain detection.

The biomarkers utilized as a part of our proposed strategy are
MRI images from the ADNI and OASIS datasets. Our essen-
tial purpose behind utilizing DTCWT over DWT is its viable
portrayal of singularities (curves and lines), despite the fact that
DWT has the benefit of representing the functions in multi-
scale and packed structures. In DTCWT, changes in magni-
tude variance can be accomplished to a higher degree.16 In our
recommended strategy, DTCWT coefficient-based AD group-
ing has been proposed utilizing primary segment examination
and direct discriminant investigation of separated coefficients; an
ELM was used as a regulating process. Classification efficiency
is reported with respect to precision, affectability, and speci-
ficity, after implementing 10-fold cross validation and execute
the process for 10 to 20 times. Our technique delivered prevalent
outcomes when contrasted with few other traditional AD classi-
fication techniques.

2. MATERIALS AND METHODS
Total 172 cases from the dataset of ADNI were used; 86 AD
and 86 HC. Moreover, we utilized 95 subjects from the OASIS
dataset; 98 HC and 28 subjects experiencing AD.

2.1. Overview of Experimental Data
Information utilized as a part of the readiness of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu)).

The ADNI was propelled in 2003 as a public–private organi-
zation drove by Principal Investigator Michael W. Weiner, MD.

Table I. Summary of subject’s demographics status.

AD Normal

No. of subjects 86 86
Male-43, Male-46,
Female-43 Female-40

Average age 77.30 76.05
Average education points 14.65 15.93
MMSE 23.48 29.08

To quantify the movement of MCI and early-beginning
Alzheimer’s Disease (AD), the main objective of the ADNI
dataset is to verify in case Positron Emission Tomography (PET),
serial MRI, other biological attributes, and clinical and neuropsy-
chological evaluation can be consolidated.

For up-to-date information, visit www.adni-info.org. (For
upgraded data, visit www.adni-info.org). Table I is representing
the demographical analysis of data which are utilized from the
ADNI dataset.

(Moreover, we used downloaded MRI images of OASIS
dataset). (OASIS is a database intended to accumulate MRI
datasets and make them uninhibitedly available to mainstream
researchers). (OASIS accumulates two sorts of information: cross-
sectional MRI information and longitudinal MRI information).
(Our study used cross-sectional MRI information, as our main
points are to build up a programmed framework for recognizing
the AD, for which longitudinal MRI information is not ideal).

(The OASIS dataset comprises of 416 Subjects aged in the
vicinity of 18 and 96 years. Our examination contained 51 AD
patients (35 with CDR = 0.5 and 16 with CDR = 1) among
100 subjects having dementia, and 44 HC among 98 typical sub-
jects). (Table II demonstrates the statistic points of interest of the
subjects utilized as a part of our research. Both men and women
are incorporated and all subjects are right-handed. The size of
the CDR is recorded in Table III).

2.2. Proposed Approach
The proposed method comprises of four stages: preprocessing
and slice extraction, characteristic extraction, the projection of
features into bringing down measurement, and productive char-
acterization of the disease. Figure 4 demonstrates all stages in
detail.

2.2.1. Preprocessing and Slice Extraction
(All MRI images utilized for training and testing the ELM of
our proposed method are seen utilizing the ONIS toolbox and
traded as 2D MRI image cuts. All pictures are in PNG format,
and the measurements of OASIS picture cuts are 176× 208; the
measurements of the ADNI picture cuts are 256×166. The scope
of determination of those slices was performed physically from

Table II. Statistical OASIS data details used in our learning.

Factors Normal AD

No. of patients 98 28
Age 84.40 (76–96) 82.11 (76–96)
Education 3.34 (1–5) 3.13 (1–5)
Socioeconomic status 2.31 (1–5) 2.82 (1–5)
CDR (0/0.5/1) 98/0/0 0/0/28
MMSE 28.72 (25–30) 24.82 (18–30)
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Table III. Clinical dementia scale.

CDR Rank

0.5 Very mild dementia
1 Mild
2 Moderate
3 Severe

the tissue center for data clarity. The images are resized to 256×
256 for further processing. An example of a brain image slice
is depicted in Figure 1. We have utilized LibSVM toolbox for
kernel SVM simulation in the MATLAB.

2.2.2. Dual Tree Complex Wavelet Transform
The wavelet transform is a standout amongst the most every
now and again utilized feature extraction procedures for MRI
images. For boosting directional selectivity and impaired by
DWT, DTCWT is suggested. The main motivation beyond utiliz-
ing DTCWT is it gives the solution for “shift-invariant problems”
and directional selectivity in two directions or more dimensions,”
that is the drawback of a traditional DWT.

For our proposed method, the DTCWT16 coefficients were
extracted from the input MRI images. The highlights of the fifth
resolution scale were utilized as they created higher classifica-
tion execution when contrasted and other determination levels.
DTCWT has a multi-resolution portrayal, as with CWT). For
proficient disease characterization, it is desirable to utilize a cou-
ple of intermediate scales of the extricated coefficients as input
to a categorizer, as the least resolution scales lose fine points of
interest and high-resolution scales often noisy. Accordingly, we
like to pick a couple of moderate sizes of DTCWT coefficients.
These coefficients were used as input data for principal compo-
nent analysis (PCA). CWT can be presented as complex-valued
scaling capacities and complex-valued wavelets. DTCWT draws
in two genuine DWTs, which individually provides the real and
imaginary component of the wavelet transform. Moreover, two-
channel bank types are set: analysis channel banks and synthe-
sis channel banks. These filter banks are utilized for executing
DTCWT to guarantee that general transformation turns out to be
roughly analytic as shown in Figure 2.

The DTCWT can be designated in matrix form as:

D = �Dh Dg� (1)

Where, Dh, Dg are rectangular matrices.

(a) Normal (b) Alzheimer

Fig. 1. MR Image slice sample (Axial slice view after preprocessing).
(a) Normal, (b) Alzheimer.

For the input data image x, complex wavelet, coefficients can
be presented as:

Th+ jTg (2)

where Th =Dh ∗x is the real part, and Tg =Dg ∗x is the imagi-
nary part.
The DTCWT coefficients of input images are constant while

shifting; even if an image is switched in time or space, the
coefficients do not change. Moreover, DTCWT utilizes isolation
of 6 distinct headings (±15, ±30, ±45) for 2D pictures and
28 unique bearings for 3D pictures, while regular DWT takes
into account confinement of horizontal and vertical directions).
We have drawn out 5 levels of DTCWT coefficients from one
ratio for each of the 2-dimensional piece image subject.

2.2.3. Principal Component Analysis
Primary Component Analysis (PCA)17 is a dimensionality lessen-
ing strategy that is used to map features onto lower dimensional
space. The transformation of data can be linear or nonlinear.
One of the most commonly utilized linear-transformation is PCA
that is an orthogonal transformation utilized to change over con-
ceivably connected samples to directly uncorrelated factors. The
number of principal components is not exactly or equivalent to
the quantity of unique factors). The PCA transformation process
is demonstrated in Figure 3.
The PCA is compiled as:

(i) Getting the average of the initial dataset and zero mean
matrix.
(ii) Constructing the covariance matrix of the resulting matrixes
form step (i).
(iii) Calculating the eigenvalue and the eigenvector.
(iv) Projecting the data matrix accomplished by eigenvectors and
from the highest to lowest eigenvalues.

2.2.4. Linear Discriminant Analysis
A generalizing Fisher linear discriminant18 is utilized for the lin-
ear projection of features to detach two or more classes. For
making influential and discriminating projected features, PCA
coefficients can be predicted on to a recent LDA projection axis.
It is required to choose between-class and within-class

variability.
The between class variable dataset matrix can be designated

by sample variance as:

SB = 1
c

c∑

j=1

�mj −m��mj −m�T (3)

Within class variance matrix can be entitled as:

Sw =
c∑

j=1

∑

zk∈wi

�zk −mi��zk −mi�
T (4)

where, zk is k-th sample variable belongs to a class.
The generalized Rayleigh Coefficient is:

J �w�= W tSBW

W tSwW
(5)

where, W is the matrix for LDA coefficients. It can be classified
using the generalized eigenvalue issue as:

SBW = �SwW (6)

where, � is the eigenvalue.
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Fig. 2. Block diagram for a 3-level DTCWT.

If Sw is singular matrix, the above Eq. (6) can be simplified as:

S−1
w SBW = �W (7)

where, the eigenvectors of S−1
w SB will be W . The eigenvector

matrix will be Wlda,

Wlda = �W1W2W3 � � �Wk�� k ∈ Z (8)

The PCA coefficients values can be projected onto l lower dimen-
sional LDA projection entitled by eigenvectors correlating with
non-zero higher efficient energy eigenvalues,

W ′
lda = �W1W2W3 � � �Wl�� l ∈ Z (9)

where, l <= k.
F , the output feature model is estimated as:

F = �W ′
lda�

T ·	�x�pc (10)

2.2.5. Extreme Learning Machine Algorithm
Extreme learning machine (ELM) has been lengthened to various
research fields and gained great breakthrough. ELM is exception-
ally fast training, good generalization, and has universal approx-
imation capability. It has been successful in various applications,
for example, ship detection, image quality enhancement, and
face recognition. We applied Extreme Machine Learning (ELM)
rather than using deep learning based classification because the
deep-based model needs a large number of samples for optimum
performance. For smaller data, the ELM performs better and as
studied by Huang et al.19 A brief overview of ELM is depicted
below.

Consider the training set S = 
�xi� yi��
n
i=1, where xi ∈ Rd is

the training sample, and yi ∈ 
−1�+1� is its corresponding class
level, for the single hidden layer feed-forward neural network
(SLFN) with L hidden neurons. The output function of the prob-
lem of can be solved as a

f �xi�=
L∑

k=1

�khk�ak�bk�xi�= h�xi��� i = 1� � � � �N

Where, �k is the weight matrix of the output, h�xi� =
hk�ak�bk�xi�, k = 1� � � � �L is the output of the network with

respect to its training sample xi, h�� is a nonlinear continuous
function, and ak�bk are the corresponding parameters of k-th
hidden neuron. The suitable parameters are obtained by minimiz-
ing the error function ��H�−Y ��. The explanation of a SLFN is
shown in Figure 4. ELM utilizes random hidden node parame-
ters and the tuning free training approach for feedforward neural
networks, unlike iterative weight updating process as done in
conventional gradient descent algorithm. The optimization prob-
lem can be solved by least squares (LS) algorithm easily.21 The
network output weights can also be solved by dual optimization
problem.22

Input feature matrix (M*N) 
M: number of dimension of features

N: number of features

Transform to zero mean matrix

Compute the covariance matrix
(d*d )

Select f eigenvectors corresponding
to f largest eigenvalues (m*d )

Compute the projected data (f*N )
such that m<n

Fig. 3. PCA implementation for feature reduction.
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X1

X2

XN

wi

bi

T1

T2

β

Fig. 4. Sketch of extreme learning machine.

3. RESULTS AND DISCUSSION
3.1.
3.1.1. Background
In this article, our proposed method is presented by utilizing
Fisher linear discriminant analysis of DTCWT principal com-
ponents mechanism. The detail description of our proposed
method is shown in Figure 5. The benefit of WT above FT
is its multiple scaled representations and frequency components
with spatial domain information. Fourier coefficients just pro-
duce image frequency information, when in fact wavelets contain
effective observations of the spatial and frequency domain in
a multi-scaled layout. Additionally, wavelets description is spa-
tially localized; Fourier functions are not spatially localized, as
they comprise only of image frequency components. MRI images
can be illustrated and can be treated at different resolutions, and
as a result, they are used as an incisive framework for han-
dling multi-resolution images. Eventually, DWT coefficients can
be extracted by utilizing arrays of low and high pass filter banks.

Nevertheless, there are several disadvantages to traditional
wavelet transform. These involve drift in wavelet coefficient
oscillation in the direction of positive and negative around singu-
larities. Shift variance of the signal which might cause oscillation
of wavelet coefficient examples around singularities, substantial
aliasing of sufficiently spaced wavelet coefficient patterns, and
absence of directional selectivity disturb to the process as well as
the model of the geometric image properties (such as edges and
ridges). In these circumstances, flaws on the subject of conven-
tional DWT are not proficient by Fourier transform. Influenced
by Fourier transform, our enhanced DTCWT is used to over-
whelm these drawbacks. Earlier research shows that DTCWT
feature-based AD disease detection which performs superior to
typical DWT-based feature extraction.20 Additionally, DTCWT

Dual Tree Complex
wavelet transform

Principal Component
Analysis LDA

AD/NC
Axial slice image

ELM

Fig. 5. Flowchart of DTCWT based classification performance of AD from HC.

gives superior singularities of the line and curve representation.
Therefore, the discriminative feature can be extracted moderately,
which is vital for any pattern classification problem.
Mis-classification rates and higher dimensionality features

present the problems concerning pattern classification. For
smooth classification, dimensionality reduction methods are uti-
lized to transform data from higher to lower dimensional spaces.
PCA is the most commonly used linear transformation and
addresses these concerns when it is needed. Extracted features
are examined using PCA for feature reduction. For each MRI
images from the OASIS as well as ADNI datasets, there are
49152 (1536× 32) features. After applying PCA method, these
results are reduced to 128×127 for OASIS dataset and 172×171
for ADNI dataset.
After PCA, the classification may still not be enough, as

PCA does not define for the variability of features within a
class or between classes. To confirm the PCs more separable, it
is required to transforms data into another space incorporating
directions that will find axes, which will inflate the gap between
different classes. Thus, LDA is enforced to project PCs onto new
projection axes more effective disease classification.
ELM is an emerging effective pattern classification method23�35

that can be used in many fields such as image processing, video
applications, medical applications, etc. The ELM has very quick
learning speed, better generalization performance compared to a
gradient-based method such as back-propagation methods, less
prone to problems like local minima, inappropriate learning rate,
and over-fitting, etc. ELM is flexible with hidden activation func-
tions. It has the benefit of quick learning process, relatively supe-
rior performance over SVM and its variants.
All programs are executed in MATLAB 2015b which was

installed in Intel (R) Core (TM) i3-4160 CPU system. Due to
the time complication of the extraction of DTCWT and DWT
coefficients from a 2D MRI image slices, are 0.5148 and 0.5109
respectively. There is no meaningful difference in CPU elapsed
time when comparing transform approaches. As a dimensionality
reduction method, we utilized PCA to neglect higher dimensional
input features.
In addition, it is not possible to train and test a classifier

with higher dimensional features due to elapsed time. CPU
elapsed time to accomplishing ELM classification performance
was approximately 70.40 seconds without lowering dimensions.
The time needed for our proposed method is approximately
roughly 15 seconds; faster than the approach that does not use
Fisher discriminant analysis.

3.1.2. Performance Evaluation
The act of a binary classifier can be evoked by utilizing con-
fusion matrix, as shown in Table IV. The number of examples

5



R ES E A R CH AR T I C L E J. Med. Imaging Health Inf. 8, 1–10, 2018

Table IV. Confusion matrix for a binary classifier to differentiate
between two classes (S1 and S2�.

Predicted class

True class S1 (Patients) S2 (Controls)

S1 (Patients) TP FN
S2 (Controls) FP TN

correctly forecasted by the classifier, which stands at the diago-
nal. These may be categorized into true positives TP, representing
correct identified patients, and true negatives TN, and which also
represent correct identified controls. There are several models
wrongly which are inaccurately stratified by the classifier which
may be allocated into false positives FP, showing controls inaccu-
rately distinguished as patients, and false negatives FN, showing
patients inaccurately classified as controls.

Accuracy is determined by calculating the ratio of examples
that are accurately distinguished by a classifier:

accuracy = TP+TN
TP+TN+FP+FN

(11)

This result may not be an absolute performance metric in the
class distribution of the dataset is unstable. For example, if class
C1 is much greater than C2, a high accuracy value could be
obtained by a classifier that marks all examples as belonging
to class C1. Sensitivity is the rate of true positives (TP), and
specificity the rate true negatives (TN). Sensitivity and specificity
are defined as:

sensitivity= TP

TP+FN
and specificity= TN

TN+FP
(12)

Sensitivity deals with the proportion of correctly identified
patients, and specificity deals with the proportion of correctly
identified controls. Furthermore, some other commonly used sta-
tistical performance evaluation measures such as precision, recall,
f_measure, and g_mean are also calculated.

Fig. 6. Bar diagram of DTCWT based classification measurement of the AD from HC over ADNI dataset.

These measures are defined as:

recall= sensitivity�

precision = TP/�TP+FP��

f_measure= 2∗ ��precision∗ recall�/�precision+ recall��

g_mean = sqrt�TP rate∗TN rate�

(13)

The above measures may give an enhanced assessment of the
complete performance of a classifier.

3.1.3. Performance of Classification
In this research, the suggested proposed method has been imple-
mented for OASIS and ADNI data to distinguish control subjects
from AD subjects. The achieved classification performance about
accuracy (acc), sensitivity (sens), and specificity (spec) has been
shown in a bar diagram in Figures 6 and 7. Performance varies
depending on the principal components used for training and
testing. After testing this result with different PC values, it was
concluded that optimal classification performance was achieved
with PC = 20. To run a stringent statistical analysis, stratified
cross-validation (SCV) is processed. In this analysis, we have
applied 5-fold CV to OASIS data and as well as in ADNI data,
and as the number of subjects in both the datasets are (is) not
large. 5-fold CV splits the dataset into five consecutive folds,
whereas the 10-fold CV divides the dataset into ten folds. The
accuracies, sensitivities, specificities, and other statistical perfor-
mance measures obtained with the runs of 10–20, runs of 5-fold
of SCV are shown in Tables V and VII.

Although comparison with conventional approach can be dif-
ficult, also we have compared our methods with some new con-
ventional disease detection algorithms using both datasets.

To examine the performance of the ADNI dataset, the clas-
sification performance has been documented with both run-wise
fold-wise classification, as shown in Table VI. Distinct columns
and rows signify the classification accuracy of corresponding

6
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Fig. 7. Bar diagram of DTCWT based classification measurement of the AD from HC over OASIS dataset.

runs and folds. As a result, accuracy is calculated by taking the
average value of all folds and runs. The classification perfor-
mance is carried out in all five folds of each run can be analyzed
with that.

We have compared numerous recently used sets of algorithms
and approaches,24–26 using the same datasets as in this article. We
have achieved a 90�26±1�17% accuracy with comparable sensi-
tivity and specificity, which outperforms the DWT based method
proposed by Zhang et al.,24 and El-Dahshan et al.,25 shows that
in Table VI and Figure 6. The proposed technique was also car-
ried out by applying traditional DWT principal coefficients. We
have seen that the DTCWT based approach outperforms DWT

Table V. Performance evaluation over ADNI dataset.

Methods Accuracy Sensitivity Specificity Precision Recall F-measure G-mean

Proposed 90�26±1�17 90�27±1�29 90�20±1�56 90�56±1�27 90�27±1�27 90�32±1�19 90�17±1�24
DTCWT+PCA+ELM 87�41±0�95 90�26±0�89 84�45±1�31 85�74±0�95 90�26±0�89 87�70±0�77 87�14±0�91

Table VI. Run and fold wise classification performance of proposed approach over ADNI dataset.

Runs

Folds Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Fold 1 94�11 88�23 91.17 91.17 94.11 97.05 97.14 88.57 88.23 97.14 Average accuracy
Fold 2 82�85 91�17 85.71 85.71 94.11 85.71 85.71 88.23 91.42 94.28 90.25
Fold 3 100 80 91.17 94.11 82.85 94.28 94.11 91.42 94.11 88.23
Fold 4 94�11 94�11 91.17 88.57 97.14 91.17 76.47 88.23 79.41 88.23
Fold 5 80 91�42 94.28 97.05 94.11 85.29 88.23 91.17 88.57 91.17
Fold-wise accuracy 90�21 88�99 90.70 91.32 92.47 90.70 88.33 89.52 88.35 91.81

Table VII. Performance evaluation over OASIS dataset.

Methods Accuracy Sensitivity Specificity Precision Recall F-measure G-mean

Proposed 95.72±1.54 96.59±2.34 93.03±1.67 97.63±1.47 96.59±2.44 97.07±1.61 94.72±1.74
DTCWT+PCA+ELM 94.02±1.59 94.53±1.36 92.35±2.39 97.69±1.91 94.53±1.36 95.95±1.23 93.22±1.32

based method. In addition, performance is recorded without using
LDA for both types of features. However, classification of perfor-
mance has become more effective when LDA operated features
are considered, as shown in Tables V, IX, and Figure 6. Our
approach has been influential from the volumetric feature-based
research study suggested by Schmitter et al.,26 and it outperforms
the results there, as shown in Figure 6. Moreover, our outcome
compared with other classification methods and produced supe-
rior performance.
Similarly, to examine and stratify OASIS dataset, identical

approach have been used, namely run-wise and fold-wise classi-
fication, as shown in Table VIII.
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Table VIII. Run and fold-wise classification performance of proposed approach over OASIS dataset.

Runs

Folds Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Fold 1 96 92�30 92�30 96 96�15 91�66 96 96 96 100 Average accuracy
Fold 2 100 95�83 100 88�46 92�30 96�15 100 96 96�15 88 95.72
Fold 3 96�15 96�15 92 95�83 95�83 92 96 92 92 96�15
Fold 4 96�15 95�83 96 96 96�15 100 92�30 92�30 96�15 100
Fold 5 91�66 100 96�15 100 100 100 92 100 100 96
Fold-wise accuracy 95�99 96�02 95�292 95�25 96�08 95�96 95�26 95�26 96�06 96�03

Table IX. Classification performance of AD from HC over ADNI data.

Methods Accuracy Sensitivity Specificity

Proposed 90.26±1.17 90.27±1.29 90.20±1.56
DTCWT+PCA+ELM 87.41±0.95 90.26±0.89 84.45±1.31
DTCWT+PCA+ LDA+ANN 86.97±1.30 86.25±1.78 87.72±3.51
DTCWT+PCA+ LDA+KNN 83.89±0.75 81.41±1.33 86.34±1.08
DTCWT+PCA+ LDA+AdaBoost(Tree) 84.48 83.72 85.26
DWT+PCA+ANN25 80.05±0.72 81.538±1.41 78.974±1.09
DWT+PCA+KNN12 79.964±1.19 78.771±2.37 81.08±1.67
Schmitter et al.,26 85 82 88

We observed, as shown in Tables VII, X, and Figure 7 that
our approach yielded an accuracy of 95.72±1.54, a sensitivity of
96.59± 2.34, and specificity of 93.03± 1.67. This classification
performance has also been recognized without using LDA, how-
ever, outcomes improve when LDA processed on principal dual-
tree complex wavelet transform coefficients or principal DWT
coefficients and ELM is used as a classifier. The outcome is
effective when DTCWT principal coefficients are utilized over
DWT approach.

To further verify the validity of the proposed suggested
approach, we evaluated it with 12 state-of-the-art methods, as
shown in Table X for comparison, which employed different sta-
tistical settings.

The outcome shows that US+SVD-PCA+SVM-DT33 gained
an accuracy of 90%, a sensitivity of 94%, and a specificity of
71%, BRC+ IG+SVM27 attained an accuracy of 90.00%, a sen-
sitivity of 96.88%, and a specificity of 77.78%, and curvelet+
PCA + KNN32 achieved stratification accuracy of 89.47%,

Table X. Algorithm performance comparison over OASIS MRI data.

Algorithm Accuracy Sensitivity Specificity Precision

Proposed 95.72±1.54 96.59±2.34 93.03±1.67 96.13±1.57
DTCWT+PCA+ELM 94.02±1.59 94.53±1.36 92.35±2.39 94.15±2.01
DTCWT+PCA+LDA+ANN 88.59+2.08 88.75+2.75 89.55+3.96 NA
DTCWT+PCA+LDA+KNN 83.69+1.57 85.7+1.94 81.8+1.45 NA
DTCWT+PCA+LDA+ AdaBoost (Tree) 87.45 88.59 86.26 NA
BRC+ IG+SVM27 90.00 [77.41, 96.26] 96.88 [82.01, 99.84] 77.78 [51.92, 92.63] NA
BRC+ IG+Bayes27 92.00 [79.89, 97.41] 93.75 [77.78, 98.27] 88.89 [63.93, 98.05] NA
BRC+ IG+VFI27 78.00 [63.67, 88.01] 65.63 [46.78, 80.83] 100.00 [78.12, 100] NA
MGM+PEC+SVM28 92.07±1.12 86.67±4.71 N/A 95.83±5.89
GEODAN+BD+ SVM28 92.09±2.60 80.00±4.00 NA 88.09±5.33
TJM+WTT+SVM28 92.83±0.91 86.33±3.73 N/A 85.62±0.85
VBM+RF29 89.0±0.7 87.9±1.2 90.0±1.1 NA
DF+PCA+SVM30 88.27±1.9 84.93±1.21 89.21±1.6 69.30±1.91
EB+WTT+SVM+RBF31 86.71±1.93 85.71±1.91 86.99±2.30 66.12±4.16
EB+WTT+SVM+Pol31 92.36±0.94 83.48±3.27 94.90±1.09 82.28±2.78
Curvelet+PCA+KNN32 89.47 94.12 84.09 NA
US+SVDPCA+SVM-DT33 90 94 71 NA
DTCWT+PCA+FFNN36 90.6±0.01 92.00±0.04 87.78±0.04 89.6±0.03

a sensitivity of 94.12%, and a specificity of 84.09%. We noticed
that these approaches have lower specificity compared to the
other approach, which was stated earlier. In contrast, BRC+IG+
Bayes27 gained higher specificity. Likewise, BRC+ IG+VFI27

generated a classification accuracy of 78%, sensitivity of 65.63%
and specificity of 100%. Although it gained high specificity,
accuracy and sensitivity generated by this algorithm is compara-
tively poor.

All other approaches attained satisfying outcomes. VBM+
RF29 gained an accuracy of 89.0±0.7%, a sensitivity of 87.9±
1.2%, and a specificity of 90.0± 1.1. These encouraging out-
comes largely due to voxel-based morphometry (VBM). DF+
PCA+SVM30 gained an accuracy of 88.27±1.89%, a sensitivity
of 84.93±1.21%, a specificity of 89.21±1.63%. This approach
is based on a novel method called displacement field (DF). EB+
WTT+SVM+RBF31 achieved an accuracy of 86.71± 1.93%,
a sensitivity of 85.71± 1.91%, a specificity of 86.99± 2.30%,
though EB+WTT+SVM+Pol31 yields improved classification
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performance. In addition, MGM+ PEC+ SVM,28 GEODAN+
BD+SVM,28 and TJM+WTT+SVM28 each obtained roughly
92% accuracy with relatively high sensitivity and precision;
specificity was not taken into account for these approach.

Lastly, taking classification performance into consideration,
our method outperforms entirely other methods analyzed here.
We have also formed encouraging performance evaluation for
sensitivity and specificity. Hence, we submit our outcomes, which
are either finest or equivalent to the other compared techniques.

4. CONCLUSIONS
Our work presents the way of combining different methods to
detect the severity of the disease. It also demonstrates the impor-
tance of an assembling method, which includes efficient feature
extraction, dimensionality reduction, and classification to detect
the stage of the disease. This work may lead to design an auto-
mated Computer aided diagnosis (CAD) framework of the dis-
ease, which has the potential to change the current diagnosis
methods done by radiologists and clinicians manually. The pro-
posed method applies LDA, principal component analysis on
DTCWT coefficients, then ELM to detect AD during the training
phase. Both PCA and LDA reduces the dimensionality reduction
considering inside class variability and between class variability
of extracted feature. The approach gives us the promising result
which is comparable or superior to some state of the art algo-
rithms mentioned in the manuscript.

In future, our research activity will focus on following direc-
tions: 3D DTCWT-based feature extraction with the concept
of multi-resolution and classification, and Convolutional Neural
Network (CNN) based stratification using 3D MRI.
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